哈希表就是一种以键-值(key-indexed)存储数据的结构,我们只要输入待查找的值即key,即可查找到其对应的值。
哈希的思路很简单,如果所有的键都是整数,那么就可以使用一个简单的无序数组来实现:将键作为索引,值即为其对应的值,这样就可以快速访问任意键的值。这是对于简单的键的情况,我们将其扩展到可以处理更加复杂的类型的键。
使用哈希查找有两个步骤:
1.使用哈希函数将被查找的键转换为数组的索引。在理想的情况下,不同的键会被转换为不同的索引值,在有些情况下我们需要处理多个键被哈希到同一个索引值的情况。哈希查找的第二个步骤就是处理冲突
2.处理哈希碰撞冲突。有很多处理哈希碰撞冲突的方法,本文后面会介绍拉链法和线性探测法。
哈希表是一个在时间和空间上做出权衡的经典例子。如果没有内存限制,那么可以直接将键作为数组的索引。那么所有的查找时间复杂度为O(1);如果没有时间限制,那么我们可以使用无序数组并进行顺序查找,这样只需要很少的内存。哈希表使用了适度的时间和空间来在这两个极端之间找到了平衡。只需要调整哈希函数算法即可在时间和空间上做出取舍。
在Hash表中,记录在表中的位置和其关键字之间存在着一种确定的关系。这样我们就能预先知道所查关键字在表中的位置,从而直接通过下标找到记录。使ASL趋近与0.
1)哈希(Hash)函数是一个映象,即:将关键字的集合映射到某个地址集合上,它的设置很灵活,只要这个地址集合的大小不超出允许范围即可;
2)由于哈希函数是一个压缩映象,在一般情况下,很容易产生“冲突”现象,即:key1!=key2,而f(key1)=f(key2)。
3).只能尽量减少冲突而不能完全避免冲突,这是因为通常关键字集合比较大,其元素包括所有可能的关键字,而地址集合的元素仅为哈希表中的地址值
在构造这种特殊的“查找表”时,除了需要选择一个“好”(尽可能少产生冲突)的哈希函数之外;还需要找到一种“处理冲突”的方法。
一.Hash构造函数的方法
1.直接定址法:
直接定址法是以数据元素关键字k本身或它的线性函数作为它的哈希地址,即:H(k)=k或H(k)=a×k+b;(其中a,b为常数)
2.数字分析法:
假设关键字集合中的每个关键字都是由s位数字组成(u1,u2,…,us),分析关键字集中的全体,并从中提取分布均匀的若干位或它们的组合作为地址。
数字分析法是取数据元素关键字中某些取值较均匀的数字位作为哈希地址的方法。即当关键字的位数很多时,可以通过对关键字的各位进行分析,丢掉分布不均匀的位,作为哈希值。它只适合于所有关键字值已知的情况。通过分析分布情况把关键字取值区间转化为一个较小的关键字取值区间。
3.折叠法:
将关键字分割成若干部分,取它们的叠加和为哈希地址。两种叠加处理的方法:移位叠加:将分割后的几部分低位对齐相加;边界叠加:从一端沿分割界来回折叠,对齐相加。
所谓折叠法是将关键字分割成位数相同的几部分(后一部分的位数可以不同),取这几部分的叠加和(舍去进位),这方法称为折叠法。这种方法适用于关键字位数较多,关键字中每一位上数字分布大致均匀的情况。
折叠法中数位折叠又分为移位叠加和边界叠加两种方法,移位叠加是将分割后是每一部分的低位对齐,相加;边界叠加是从一端向另一端沿分割界来回折叠,对齐相加。